Information Coding / Computer Graphics, ISY, LiTH

TNMO084
Procedural images

Ingemar Ragnemalm, ISY

1(75)

..........

:: ‘g ‘: Information Coding / Computer Graphics, ISY, LiTH
o

Lecture 4

More noise
Voronoi (cellular) noise including distance mapping
Transformations of other things than geometry

Anti-aliasing

2(75)

Information Coding / Computer Graphics, ISY, LiTH

Dugga results

Many had not very high points. Don't give up, it was
the very first. You can improve it on the retake.

Any score on 2.5 or higher should be considered good
(but not too good to improve)!

3(75)

‘;d ‘j Information Coding / Computer Graphics, ISY, LiTH
e

Common misconception in the dugga

Filtered white noise (a.k.a. value noise) is not
less smooth than gradient noise!

Consider a smoothstep between each sample.

Simple, and smooth.

VN

_inear Smoothstep Cubic spline

4(75)

"d . Information Coding / Computer Graphics, ISY, LiTH
4

A few hints
C continuity is about continuous derivatives (= same
angle and speed). G is about proportional ones (=
same angle).
Low-pass filtering approximates sinc.

Parallel patterns are calculated as functions of x and vy,
pixelwise. Fragment shader friendly is the point.

5(75)

Information Coding / Computer Graphics, ISY, LiTH

Value-gradient noise
Combine two noise functions!
Simplest: Just add value and gradient noise

A trick to avoid the locked zero crossings

6(75)

Information Coding / Computer Graphics, ISY, LiTH

Double gradient noise

Add 2 or 4 different gradient noise functions
to avoid the zero crossing artifact

7(75)

< .(
%,

o <t
%
o
o t
N -
. -
.
> 4
“
‘%&.‘ »

Information Coding / Computer Graphics, ISY, LiTH

Fourier spectral synthesis

Random number in frequency space

Random numbers here, tuned produces a perfect noise Iin
to the desired frequencies O(NlogN) time

8(75)

o COMNG

=
:@ Information Coding / Computer Graphics, ISY, LiTH

Voronoli noise

Random tesselation of space into polygonal patches.

Based on Voronoi diagrams

Voronoi diagram: A subdivision of space into regions closest
to a set of seed points:

Many pictures following are from Marcus
Dahlquists excellent project report from 2019

9(75)

o« COMNG

e
:9 Information Coding / Computer Graphics, ISY, LiTH

Voronoi diagrams and Delaunay triangulations

The Delaunay triangulation is a dual to the Voronoi diagram

Branches are only between points with touching Delaunay
polygons

10(75)

- COMNg a

s’é p \
I ’% Information Coding / Computer Graphics, ISY, LiTH

Mo

Examples usages of Voronoi noise

Extended Voronot - Leo Solaas (2011)

From Book of shaders

11(75)

Examples usages of
Voronoi noise

»w»\‘:.’.m‘?-r v&‘
”W,A‘\\’
y /. ~ N A

Cloud Cities - Tomds Saraceno (2011)

12(75)

Information Coding / Computer Graphics, ISY, LiTH

Examples usages of

I noise

Vorono

Accretion Disc Sertes - Clint Fulkerson

13(75)

I" “’d : Information Coding / Computer Graphics, ISY, LiTH
4

Trivial implementation

For all points (pixels)
find the closest point in the seed list.
Acceptable for small sets of seeds
Complexity grows rapidly with larger sets
Possible accelerations:
» Build the Voronoi diagram explicitly from geometry, sorting points in lists
* Run a distance transform

- Do it in parallel in a fragment shader

14(75)

o COMNG

e “g
: ‘% Information Coding / Computer Graphics, ISY, LiTH
o

Distance maps

= Distance transforms
= Distance fields
An image where each pixel holds the
distance to the nearest object (seed)
pixel.

Can be extended to hold a pointer to the
seed (= a Voronoi diagram)

15(75)

:: ‘]j : Information Coding / Computer Graphics, ISY, LiTH
44

Origin
First published in 1966 by Rosenfeld & Pfalz with simple metrics
Very fast sequential implementation!
Later refined to better metrics

1980: The Euclidean Distance Transform by Danielsson including an efficient
parallel algorithm, "Jump flooding".

2011: Gustavson & Strand made the "Anti-aliased EDT" for sub-pixel precision.
Vector-based version (suitable for Voronoi diagrams) by myself 2017.

16(75)

OIMN

Information Coding / Computer Graphics, ISY, LiTH

Sequential implementation

In 2D, 3 or 4 scans over the image.
Non-eucliean (Rosenfeld 1966) needs only two scans.
4-scan EDT by Danielsson 1980

Symmetric version (Ragnemalm 1991):

(_1 ’_1)

(01_1)

(_1 ’O)

(0,0)

(O’_1)

(1 ’_1)

(0,0)

(1,0)

(_1 ’O)

(0,0)

(_1’1)

(0,1)

(0,0)

(1,0)

(0,1

(1,1

:\ ‘g ‘: Information Coding / Computer Graphics, ISY, LiTH
aﬁ*k u“‘r

Parallel implementation - Jump flooding
Danielsson 1980
Takes steps of increasing length

Simple implementation, very fast on GPUs

18(75)

Information Coding / Computer Graphics, ISY, LiTH

Anti-aliased EDT

Gustavson & Strand 2011
Adds an offset due to the intensity of edge pixels.

Approximates the edge location from the grayscale value.

Produces a very smooth distance map.

19(75)

I\ ‘% Information Coding / Computer Graphics, ISY, LiTH

Stefan's test image and its distance map

Very nice and smooth.

The smoothness opens for more applications

20(75)

\\\\\\\\

Information Coding / Computer Graphics, ISY, LiTH

Applications of distance maps
Surprisingly many!
- Graphical effects around objects, like glow
* Voronoi diagrams (and its applications)
* Edge smoothing
* Morphological operations
» Acceleration of ray marching
» Advanced bump mapping variants

and more!

21(75)

)
..........

I: "g : Information Coding / Computer Graphics, ISY, LiTH

Relevance for this course

Acceleration of large Voronoi noise
Adding effects like glow
For procedural animations, create data for good movement paths
Intermediate results for Voronoi noise
Base for interesting patterns

More...

Back to the Voronoi noise

22(75)

"d ‘: Information Coding / Computer Graphics, ISY, LiTH
44

A full distance transform is the general solution to
an arbitrary large set of points with arbitrary
positions

Can you cheat it?
If you put restrictions on the placement of seeds, you can force
« compact Voronoi polygons

- faster computation by ignoring far away seeds

23(75)

)
''''''''''

I\ "d : Information Coding / Computer Graphics, ISY, LiTH

Tiling
One popular restriction is tiling.

Each seed is placed in a random position in a specific tile,
square space, where no other seed goes.

- We only have to check the 8 closest neighbors. (Almost.)

 The result tends to be relatively "relaxed" with compact
Voronoi areas.

However, the grid restriction limits the pattern to certain axis-
dependency.

24(75)

.gﬂmm .

Information Coding / Computer Graphics, ISY, LiTH

From Book of shaders

25(75)

COMNG

o
:“ Information Coding / Computer Graphics, ISY, LiTH

Refinement of Voronoi noise

We can make it totally random

or make sure that it is visually pleasing for our application

26(75)

COMNG

s
:\’ Information Coding / Computer Graphics, ISY, LiTH

Lloyd's relaxation

Moves the seeds to better locations

Push away close seeds from each other Lioyd 1982

27(75)

Information Coding / Computer Graphics, ISY, LiTH

Going even further?

You might still dislike certain features in the Delaunay tesselation

28(75)

, ISY, LiTH

7p)
O
L
(@2
O
—
D
—
O
)
>
Q.
&
o
@)
N
(@))]
=
©O
O
@)
-
O
)
(qV)
&
—
O
y—
m

Dahlquist's procedural maps

His goal was to create procedural maps usable for e.g. games

Used the above relaxations. Not true Delanay/Voronoi in the end.

QD."O.

S

v
AR

XX

NN
SR
A'O‘

A
-ov ()

29(75)

o COMNG

ry ("t..
j ‘% Information Coding / Computer Graphics, ISY, LiTH
o

Height data for land and water etc

Multi-level Perlin noise (FBM) tuned by distance to edge

30(75)

Information Coding / Computer Graphics, ISY, LiTH

Lakes and rivers

Lakes found as isolated low areas

Rivers created somewnhat arbitrarily

31(75)

...........

23 "ﬁ ‘: Information Coding / Computer Graphics, ISY, LiTH

One more time: Transformations

1 0 0O O
0 Co0sBO -sinf
— — 0 SinB cosh
100 % 0 0 0 f
0 1 0ty - -
0 0 1t
O 00 1 cosf 0 sin6 O
o 1 0 o
B . -sinf g cosO
S 000 0 0 0 f
0Osy 0O - -
O 0 s; O
-0 0 0 1 cosH -sinB g 0
sinB cosB o 0
0 O 10
| 0 O 0 1 |

applied elsewhere

32(75)

\\\\\\\\\

Information Coding / Computer Graphics, ISY, LiTH

Color transformation

You can transform colors with a matrix!

Example: Transform between color formats:

// YUV to RGB matrix
mat3 yuv2rgb = mat3(1.0, 0.0, 1.13983,

1.0, -0.39465, -0.58060,
1.0

1 2.03211, 0.0);

// RGB to YUV matrix

mat3 rgb2yuv = mat3(0.2126, 0.7152, 0.0722,
-0.09991, -0.33609, 0.43600,
0.615, -0.5586, -0.05639);

33(75)

)
..........

I: "d . Information Coding / Computer Graphics, ISY, LiTH
A

Rotating colors

mat4 colorMatrix;

colorMatrix = Rz(time); // Rotate around blue

colorMatrix = Rx(time); // Rotate around red

colorMatrix = ArbRotate(SetVec3(1,1,1), time); // Rotate around rgb axis

glUniformMatrix4fv(glGetUniformLocation(program, "colorMatrix"), 1,
GL_TRUE, colorMatrix.m);

uniform mat4 colorMatrix;

void main(void)

{

vec4 color = texture(tex, texCoord);
outColor = color * colorMatrix;

;

34(75)

. COMNG

Information Coding / Computer Graphics, ISY, LiTH

Rotates in RGB space

35(75)

Information Coding / Computer Graphics, ISY, LiTH

Texture coordinate transformations

Don't take texture coordinates as something
static that you can't change!

36(75)

:3 ‘d : Information Coding / Computer Graphics, ISY, LiTH
o P

Detail textures
Combine a high frequency texture with a low frequency one

Application of multitexturering.

N

|

37(75)

IS ‘d : Information Coding / Computer Graphics, ISY, LiTH
‘@h%.“‘df

Coordinates

Detail texturing is performed with different coordinates per texture:

Low frequency texture: O to 1
High frequency texture: 0 to detailLevel
(with repeating texture)

—

38(75)

i.. COMNe =
d g
’
s

-,
j ‘% Information Coding / Computer Graphics, ISY, LiTH
o

Scrolling textures

Offset a texture by another, moving texture.
Very good way to make procedural water!

The demo is much, much more interesting...

39(75)

\\\\\\\\\\

:\ "d . Information Coding / Computer Graphics, ISY, LiTH

Scrolling textures

Combine textures, move textures, mix textures, affect texture coordinates.

In the example fragment shader:

Access texture 1, offset by time.

void main(void) Access texture 2, offset by texture 1.

{
float time=1iTime*0.0001;

vecd tl = texture(texl, texCoord + vec2(time * tlscalex,
time*tlscaley));
texture(tex2, texCoord + vec2(tl) * t2scale);

vecd t2

outColor = t2;

40(75)

Information Coding / Computer Graphics, ISY, LiTH

Conclusion: We do not need to map 1:1 with the texture coordinates.
Different textures/functions can be mapped differently!

Example: Decal

| ® O O GL3 decal example .

- Utah Teapot
- Spherically mapped surface texture

- Linearly mapped decal with
GL_CLAMP_TO_EDGE

Place as you please

41(75)

. COMNG |

f3 ‘d : Information Coding / Computer Graphics, ISY, LiTH

Texture placement

Models usually to have pre-generated texture coordinates.
You can easily scale and translate (which many did in lab 1)
But... why not do this with a matrix?

Use a rotation matrix to rotate the texture!

Apply the matrix on texture coordinates!

42(75)

Information Coding / Computer Graphics, ISY, LiTH

. COMNG
A
h‘v
3 %
. »
. -
-
4'.'
%k." »

Texture matrix

Simple example with texture matrix and multipass texturing

We can use any transformations for moving selected parts of the texture

43(75)

Information Coding / Computer Graphics, ISY, LiTH

Projected textures

Special case of texture placement: Projection matrix!

Used for shadow generation (especially shadow mapping).

O projectooe texture

44(75)

. COMNG |

I\ ‘d : Information Coding / Computer Graphics, ISY, LiTH

More on shape generation

Usually a function that tells whether we are inside or outside a shape.

Simple case: A circle

radius = sqrt((x - centerx)2 + (y—centery)z)
1f (radius < circleradius)

pixel = 1;
else

pixel = 0;

What is wrong with this?

45(75)

Information Coding / Computer Graphics, ISY, LiTH

Avoid if-statements Iin shaders when possible
Bad for SIMD = bad for GLSL

Use the function step()

More important for if-statements with multiple branches.

46(75)

1111111

Information Coding / Computer Graphics, ISY, LiTH

Step (Heaviside) revisited

A simple 0-1 transistion

float step(float a, float x)
{

}

return (float) x >= a;

a

Frequency response infinite! Has
ringing to infinitely high frequencies!

47(75)

I‘ "y .‘: Information Coding / Computer Graphics, ISY, LiTH

Anti-aliasing of shapes
Thus, step() isn't good either!

Pixel-wise generated shapes have problems with aliasing.
Special function for reducing this: aastep()

Variant of smoothstep for anti-aliasing edges.

48(75)

Information Coding / Computer Graphics, ISY, LiTH

o COMNG
3
=
»
. -
. .
-
f"(
)"»\I; .

Conventional Anti-aliasing
Supersamping
Multisampling

Post-processing of edges

49(75)

I\ ‘g Information Coding / Computer Graphics, ISY, LiTH
"'4%&".

Anti-aliasing

50(75)

“'g ‘j Information Coding / Computer Graphics, ISY, LiTH
e

Frequency space

Any signal can be decomposed into sinus waves

The amplitudes of all sinus waves form a new space -
frequency space

This space exists in any dimension. An image is a 2D
sighal and has a 2D frequency space.

51(75)

:3 ”'g : Information Coding / Computer Graphics, ISY, LiTH
4

Sampling

! ,

A digital image is a sampled version of an
underlying analog 2D signal.

52(75)

)
..........

*d ‘: Information Coding / Computer Graphics, ISY, LiTH

Sampling

When presenting the digital signal, it is
reconstructed to an analog signal.

A signal can be decomposed into different
frequency bands.

What parts of the original signal that are
accurately reconstructed depend on the
frequencies.

53(75)

I d : Information Coding / Computer Graphics, ISY, LiTH
o, 0

Signal

R T N S R A A AR AR

Result

54(75)

Is "d . Information Coding / Computer Graphics, ISY, LiTH
e

Think In frequency space!

Which frequencies are preserved and which cause
problems?

Amplitudes usually lower for higher frequencies!

Nyquist frequency

//\

> L3

N

Aliasing caused by frequencies
mirrored over the Nyquist frequency!

55(75)

...........

“d ‘: Information Coding / Computer Graphics, ISY, LiTH
o

Anti-aliasing methods

» Linear post-filtering. Bad.

» Super-sampling: Split pixels in sub-pixels. Check how
many sub-pixels that hit one pixel.

- Area sampling: Calculate covered areas of each
pixel.

* Non-linear post-filtering.

56(75)

)
..........

I‘ “’d : Information Coding / Computer Graphics, ISY, LiTH

Supersampling

Simple but slow and
memory-demanding

Sample down to
destination buffer

Draw in a high-res
image buffer

57(75)

Information Coding / Computer Graphics, ISY, LiTH

Area sampling

Determine how much of each pixel
that is covered by the shape

=T Requires knowledge of
4 ~ the location of the border.
RN T~ .
\\\ Can not anti-alias
textures

7

Usually impractical.

58(75)

. COMNG |

f\ ‘d : Information Coding / Computer Graphics, ISY, LiTH

Multisampling
Variant of supersampling
More efficient

Only improves edges

59(75)

. COMNG
5 ;
C
’
g

N\
: % Information Coding / Computer Graphics, ISY, LiTH
o

Multisampling

Multisampling: Only one Supersampling: One
execution of fragment shader execution of fragment shader
for all samples from the same for each sample

geometry

60(75)

\\\\\\\\

Information Coding / Computer Graphics, ISY, LiTH

Multisampling
Less fragment processing
Fewer texture accesses

Same number of memory writes and same post-
processing

61(75)

—~—

« COMNG .,
%
- . A
< ¢
v -
. »
»
. .
’t
|
4

%“'; » v

Information Coding / Computer Graphics, ISY, LiTH

FXAA = Fast approXimative AA

Post-processing
No higher resolution image
Non-linear filter

Don’t filter patterns

Several recent methods of this kind

62(75)

‘;d ‘: Information Coding / Computer Graphics, ISY, LiTH
V/

/‘|
4,
g o W

Anti-aliasing in OpenGL

GL POLYGON_ _SMOOTH - Old built-in, avoid
Accumulation buffer tricks: Obsolete, avoid
glEnable(GL_MULTISAMPLE); Preferred!

Can also be done by shaders. Usually unnecessary.

63(75)

Information Coding / Computer Graphics, ISY, LiTH

FSAA example

64(75)

—~—

o COUNNG a
\ 5 4
X _ %
s 2
~ -
. »
»>
. -
’l
|
4,

™ o

Information Coding / Computer Graphics, ISY, LiTH

Anti-aliasing for procedural shapes

New situation!
Big difference: We know where the edge is located!
Similar to area sampling

We can make a transition at the edge

65(75)

Information Coding / Computer Graphics, ISY, LiTH

Clamp
variant clamping from 0 to 1

Linear anti-aliasing

66(75)

Information Coding / Computer Graphics, ISY, LiTH

Smoothstep
Variant from O to 1

Non-linear anti-aliasing

67(75)

|||||||

Information Coding / Computer Graphics, ISY, LiTH

Direction dependency

Just going from O to one on the distance is not
perfect.

Example:

\
\

\

\

\
N
N
~
~
~ ~

The edge passes through the pixel on a
distance > 1!

68(75)

Information Coding / Computer Graphics, ISY, LiTH

More on anti-aliasing in Stefan's halftoning tutorial (esp page 3):

https://weber.itn.liu.se/~stegu/webglshadertutorial/shadertutorial.html

WebGL halftone shader: a step-by-step tutorial

Page1 | |2 |(3|(4||5||6(|7||8||9]|]|10

3. Anti-aliasing is required '

Because of the thresholding, the circular dots have infinitely crisp edges and
alias terribly. Aliasing is a very common problem for procedural textures, but [N

69(75)

Information Coding / Computer Graphics, ISY, LiTH

Texture anti-aliasing

Aliasing in textures are reduced by two methods:

Linear filtering

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
GL_LINEAR);

Mip- mapplng

glGenerateMipmap();

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
GL_LINEAR_MIPMAP_NEAREST);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
GL_LINEAR_MIPMAP_LINEAR);

70(75)

:: ‘d : Information Coding / Computer Graphics, ISY, LiTH
Py

MIP mapping
Texture mapping with anti-aliasing.

A resolution pyramid is built from every texture.

Memory cost: 33% more. Cheap!

/ .'\\\ // :

I’ : \ / X \l ol T
‘ / \\ . (‘| :‘ '/ o \.\}L'l

e

< —

128x128 ~ 64x64 9X52

— ——

16x16

71(75)

IIIIII

Information Coding / Computer Graphics, ISY, LiTH

MIP mapping filtering

Both within a level and between!

N

72(75)

f\' “]j : Information Coding / Computer Graphics, ISY, LiTH
4

MIP mapping filtering

GL_NEAREST
GL_LINEAR
GL_NEAREST_MIPMAP_NEAREST
GL_LINEAR_MIPMAP_NEAREST
GL_NEAREST_MIPMAP_LINEAR
GL_LINEAR_MIPMAP_LINEAR

Preferred:
GL_LINEAR for magnification
GL_LINEAR_MIPMAP_LINEAR for minification

73(75)

)
..........

:3 "d ‘j Information Coding / Computer Graphics, ISY, LiTH
44

MIP mapping

Gives anti-aliasing of textures at a very low cost.
Good results in most situations.

Aliasing problems remain at steep angles.

74(75)

\\\\\\\\

Information Coding / Computer Graphics, ISY, LiTH

Summary

Supersampling: Computationally heavy.
Excellent results. Popular method in ray-tracing

Multisampling: Simplified supersampling. Only
Improves edges

Area sampling/Smoothstep edges: Efficient
improvement for edges

Mip-mapping: Anti-aliasing for textures

75(75)

