
Information Coding / Computer Graphics, ISY, LiTH

TNM084!

Procedural images

Ingemar Ragnemalm, ISY

1(75)

1(75)

Information Coding / Computer Graphics, ISY, LiTH

Lecture 4!
!

More noise!
!

Voronoi (cellular) noise including distance mapping!
!

Transformations of other things than geometry!
!

Anti-aliasing

2(75)2(75)

Information Coding / Computer Graphics, ISY, LiTH

Dugga results!
!

Many had not very high points. Don't give up, it was
the very first. You can improve it on the retake.!

!
Any score on 2.5 or higher should be considered good

(but not too good to improve)!

3(75)3(75)

Information Coding / Computer Graphics, ISY, LiTH

Common misconception in the dugga!
!

Filtered white noise (a.k.a. value noise) is not
less smooth than gradient noise!!

!
Consider a smoothstep between each sample.!

!
Simple, and smooth.

SmoothstepLinear Cubic spline

4(75)4(75)

Information Coding / Computer Graphics, ISY, LiTH

A few hints!
!

C continuity is about continuous derivatives (= same
angle and speed). G is about proportional ones (=

same angle).!
!

Low-pass filtering approximates sinc.!
!

Parallel patterns are calculated as functions of x and y,
pixelwise. Fragment shader friendly is the point.

5(75)5(75)

Information Coding / Computer Graphics, ISY, LiTH

Value-gradient noise!
!

Combine two noise functions!!
!

Simplest: Just add value and gradient noise!
!

A trick to avoid the locked zero crossings

6(75)6(75)

Information Coding / Computer Graphics, ISY, LiTH

Double gradient noise!
!

Add 2 or 4 different gradient noise functions
to avoid the zero crossing artifact

7(75)7(75)

Information Coding / Computer Graphics, ISY, LiTH

Fourier spectral synthesis!
!

Random number in frequency space

Random numbers here, tuned
to the desired frequencies

produces a perfect noise in
O(NlogN) time

8(75)8(75)

Information Coding / Computer Graphics, ISY, LiTH

Voronoi noise!
!

Random tesselation of space into polygonal patches.!
!

Based on Voronoi diagrams!
!

Voronoi diagram: A subdivision of space into regions closest
to a set of seed points:

Many pictures following are from Marcus
Dahlquists excellent project report from 2019

9(75)9(75)

Information Coding / Computer Graphics, ISY, LiTH

Voronoi diagrams and Delaunay triangulations!
!

The Delaunay triangulation is a dual to the Voronoi diagram!
!

Branches are only between points with touching Delaunay
polygons

10(75)10(75)

Information Coding / Computer Graphics, ISY, LiTH

Examples usages of Voronoi noise

From Book of shaders

11(75)11(75)

Information Coding / Computer Graphics, ISY, LiTH

Examples usages of
Voronoi noise

12(75)12(75)

Information Coding / Computer Graphics, ISY, LiTH

Examples usages of
Voronoi noise

13(75)13(75)

Information Coding / Computer Graphics, ISY, LiTH

Trivial implementation!
!

For all points (pixels)!
!

find the closest point in the seed list.!
!

Acceptable for small sets of seeds!
!

Complexity grows rapidly with larger sets!
!

Possible accelerations:!
!

• Build the Voronoi diagram explicitly from geometry, sorting points in lists!
!

• Run a distance transform!
!

• Do it in parallel in a fragment shader

14(75)14(75)

Information Coding / Computer Graphics, ISY, LiTH

Distance maps!
!

= Distance transforms!
!

= Distance fields!
!

An image where each pixel holds the
distance to the nearest object (seed)

pixel.!
!

Can be extended to hold a pointer to the
seed (= a Voronoi diagram)

15(75)15(75)

Information Coding / Computer Graphics, ISY, LiTH

Origin!
!

First published in 1966 by Rosenfeld & Pfalz with simple metrics!
!

Very fast sequential implementation!!
!

Later refined to better metrics!
!

1980: The Euclidean Distance Transform by Danielsson including an efficient
parallel algorithm, "Jump flooding".!

!
2011: Gustavson & Strand made the "Anti-aliased EDT" for sub-pixel precision.

Vector-based version (suitable for Voronoi diagrams) by myself 2017.

16(75)16(75)

Information Coding / Computer Graphics, ISY, LiTH

Sequential implementation!
!

In 2D, 3 or 4 scans over the image.!
!

Non-eucliean (Rosenfeld 1966) needs only two scans.!
!

4-scan EDT by Danielsson 1980!
!

Symmetric version (Ragnemalm 1991):

(0,0)

(0,-1)

(-1,0)

(-1,-1)

(1,0)

(1,-1)

(0,0)

(0,-1)

(0,0)

(0,1)

(-1,0)

(-1,1)

(1,0)

(1,1)

(0,0)

(0,1)

17(75)17(75)

Information Coding / Computer Graphics, ISY, LiTH

Parallel implementation - Jump flooding!
!

Danielsson 1980!
!

Takes steps of increasing length!
!

Simple implementation, very fast on GPUs

18(75)18(75)

Information Coding / Computer Graphics, ISY, LiTH

Anti-aliased EDT!
!

Gustavson & Strand 2011!
!

Adds an offset due to the intensity of edge pixels.!
!

Approximates the edge location from the grayscale value.!
!

Produces a very smooth distance map.

19(75)19(75)

Information Coding / Computer Graphics, ISY, LiTH

Stefan's test image and its distance map!
!

Very nice and smooth.!
!

The smoothness opens for more applications

20(75)20(75)

Information Coding / Computer Graphics, ISY, LiTH

Applications of distance maps!
!

Surprisingly many!!
!

• Graphical effects around objects, like glow!
!

• Voronoi diagrams (and its applications)!
!

• Edge smoothing!
!

• Morphological operations!
!

• Acceleration of ray marching!
!

• Advanced bump mapping variants!
!

and more!

21(75)21(75)

Information Coding / Computer Graphics, ISY, LiTH

Relevance for this course!
!

Acceleration of large Voronoi noise!
!

Adding effects like glow!
!

For procedural animations, create data for good movement paths!
!

Intermediate results for Voronoi noise!
!

Base for interesting patterns!
!

More...!
!
!
!

Back to the Voronoi noise

22(75)22(75)

Information Coding / Computer Graphics, ISY, LiTH

A full distance transform is the general solution to
an arbitrary large set of points with arbitrary

positions!
!

Can you cheat it?!
!

If you put restrictions on the placement of seeds, you can force!
!

• compact Voronoi polygons!
!

• faster computation by ignoring far away seeds

23(75)23(75)

Information Coding / Computer Graphics, ISY, LiTH

Tiling!
!

One popular restriction is tiling.!
!

Each seed is placed in a random position in a specific tile,
square space, where no other seed goes.!

!
• We only have to check the 8 closest neighbors. (Almost.)!

!
• The result tends to be relatively "relaxed" with compact

Voronoi areas.!
!

However, the grid restriction limits the pattern to certain axis-
dependency.

24(75)24(75)

Information Coding / Computer Graphics, ISY, LiTH

From Book of shaders

25(75)25(75)

Information Coding / Computer Graphics, ISY, LiTH

Refinement of Voronoi noise!
!

We can make it totally random!
!

or make sure that it is visually pleasing for our application

26(75)26(75)

Information Coding / Computer Graphics, ISY, LiTH

Lloyd's relaxation!
!

Moves the seeds to better locations!
!

Push away close seeds from each other Lloyd 1982

27(75)27(75)

Information Coding / Computer Graphics, ISY, LiTH

Going even further?!
!

You might still dislike certain features in the Delaunay tesselation

28(75)28(75)

Information Coding / Computer Graphics, ISY, LiTH

Dahlquist's procedural maps!
!

His goal was to create procedural maps usable for e.g. games!
!

Used the above relaxations. Not true Delanay/Voronoi in the end.!
!

29(75)29(75)

Information Coding / Computer Graphics, ISY, LiTH

Height data for land and water etc!
!

Multi-level Perlin noise (FBM) tuned by distance to edge

30(75)30(75)

Information Coding / Computer Graphics, ISY, LiTH

Lakes and rivers!
!

Lakes found as isolated low areas!
!

Rivers created somewhat arbitrarily

31(75)31(75)

Information Coding / Computer Graphics, ISY, LiTH

One more time: Transformations

tx001
010
100

1000

ty
tz

00
0
sz00

1000

0
0

sx
sy0
0

0001
-sinθcosθ0
cosθsinθ0

1000

0
0

0
0

0cosθ

-sinθ
10

cosθ

sinθ

0
1000

0
0

00
0
1

-sinθcosθ

0
cosθsinθ

0
1000

0
0

applied elsewhere

32(75)32(75)

Information Coding / Computer Graphics, ISY, LiTH

Color transformation!
!

You can transform colors with a matrix!!
!

Example: Transform between color formats:!
!

// YUV to RGB matrix!
mat3 yuv2rgb = mat3(1.0, 0.0, 1.13983,!
 1.0, -0.39465, -0.58060,!
 1.0, 2.03211, 0.0);!
!
// RGB to YUV matrix!
mat3 rgb2yuv = mat3(0.2126, 0.7152, 0.0722,!
 -0.09991, -0.33609, 0.43600,!
 0.615, -0.5586, -0.05639);!

33(75)33(75)

Information Coding / Computer Graphics, ISY, LiTH

Rotating colors
 mat4 colorMatrix;
 colorMatrix = Rz(time); // Rotate around blue
 colorMatrix = Rx(time); // Rotate around red
 colorMatrix = ArbRotate(SetVec3(1,1,1), time); // Rotate around rgb axis
 glUniformMatrix4fv(glGetUniformLocation(program, "colorMatrix"), 1,
GL_TRUE, colorMatrix.m);

uniform mat4 colorMatrix;

void main(void)
{
 vec4 color = texture(tex, texCoord);
 outColor = color * colorMatrix;
}

34(75)34(75)

Information Coding / Computer Graphics, ISY, LiTH

Rotates in RGB space

35(75)35(75)

Information Coding / Computer Graphics, ISY, LiTH

Texture coordinate transformations!
!

Don't take texture coordinates as something
static that you can't change!

36(75)36(75)

Information Coding / Computer Graphics, ISY, LiTH

Detail textures
Combine a high frequency texture with a low frequency one!
!
Application of multitexturering.

37(75)37(75)

Information Coding / Computer Graphics, ISY, LiTH

Coordinates!
!

Detail texturing is performed with different coordinates per texture:!
!

Low frequency texture: 0 to 1!
High frequency texture: 0 to detailLevel!

(with repeating texture)
0 1

0 1

38(75)38(75)

Information Coding / Computer Graphics, ISY, LiTH

Scrolling textures
Offset a texture by another, moving texture.!
Very good way to make procedural water!

The demo is much, much more interesting...

39(75)39(75)

Information Coding / Computer Graphics, ISY, LiTH

Scrolling textures
Combine textures, move textures, mix textures, affect texture coordinates.!

!
In the example fragment shader:

Access texture 1, offset by time.!
Access texture 2, offset by texture 1.void main(void)!

{!
! float time=iTime*0.0001;!
!
! vec4 t1 = texture(tex1, texCoord + vec2(time!* t1scalex,
! ! ! ! ! ! ! ! ! ! time*t1scaley));!
! vec4 t2 = texture(tex2, texCoord + vec2(t1) !* t2scale);!
!
! outColor = t2;!
}!

40(75)40(75)

Information Coding / Computer Graphics, ISY, LiTH

Conclusion: We do not need to map 1:1 with the texture coordinates.
Different textures/functions can be mapped differently!!
!
Example: Decal!
!
• Utah Teapot!
• Spherically mapped surface texture!
• Linearly mapped decal with!
GL_CLAMP_TO_EDGE!
!
Place as you please

41(75)41(75)

Information Coding / Computer Graphics, ISY, LiTH

Texture placement!
!

Models usually to have pre-generated texture coordinates.!
!

You can easily scale and translate (which many did in lab 1)!
!

But... why not do this with a matrix?!
!

Use a rotation matrix to rotate the texture!!
!

Apply the matrix on texture coordinates!!

42(75)42(75)

Information Coding / Computer Graphics, ISY, LiTH

Texture matrix!
!

Simple example with texture matrix and multipass texturing!
!

We can use any transformations for moving selected parts of the texture

43(75)43(75)

Information Coding / Computer Graphics, ISY, LiTH

Projected textures!
!

Special case of texture placement: Projection matrix!!
!

Used for shadow generation (especially shadow mapping).

44(75)44(75)

Information Coding / Computer Graphics, ISY, LiTH

More on shape generation!
!

Usually a function that tells whether we are inside or outside a shape.!
!

Simple case: A circle!
!

radius = sqrt((x - centerx)2 + (y-centery)2)!
if (radius < circleradius)!
! pixel = 1;!
else!
! pixel = 0;!

!
What is wrong with this?

45(75)45(75)

Information Coding / Computer Graphics, ISY, LiTH

Avoid if-statements in shaders when possible!
!

Bad for SIMD = bad for GLSL!
!

Use the function step()!
!
!

More important for if-statements with multiple branches.

46(75)46(75)

Information Coding / Computer Graphics, ISY, LiTH

Step (Heaviside) revisited
!

A simple 0-1 transistion!
!
! ! ! ! ! ! float step(float a, float x)!
! ! ! ! ! ! {!
! ! ! ! ! ! ! ! return (float) x >= a;!
! ! ! ! ! ! }

1

a

Frequency response infinite! Has
ringing to infinitely high frequencies!

47(75)47(75)

Information Coding / Computer Graphics, ISY, LiTH

Anti-aliasing of shapes!
!

Thus, step() isn't good either!!
!

Pixel-wise generated shapes have problems with aliasing.!
!

Special function for reducing this: aastep()!
!

Variant of smoothstep for anti-aliasing edges.

48(75)48(75)

Information Coding / Computer Graphics, ISY, LiTH

Conventional Anti-aliasing!
!

Supersamping!
!

Multisampling!
!

Post-processing of edges

49(75)49(75)

Information Coding / Computer Graphics, ISY, LiTH

Anti-aliasing

50(75)50(75)

Information Coding / Computer Graphics, ISY, LiTH

Frequency space!
!

Any signal can be decomposed into sinus waves!
!

The amplitudes of all sinus waves form a new space -
frequency space!

!
This space exists in any dimension. An image is a 2D

signal and has a 2D frequency space.

51(75)51(75)

Information Coding / Computer Graphics, ISY, LiTH

Sampling

A digital image is a sampled version of an
underlying analog 2D signal.

52(75)52(75)

Information Coding / Computer Graphics, ISY, LiTH

When presenting the digital signal, it is
reconstructed to an analog signal.!

!
A signal can be decomposed into different

frequency bands.!
!

What parts of the original signal that are
accurately reconstructed depend on the

frequencies.

Sampling

53(75)53(75)

Information Coding / Computer Graphics, ISY, LiTH

Signal

Sampling

Result

54(75)54(75)

Information Coding / Computer Graphics, ISY, LiTH

Think in frequency space!!
!

Which frequencies are preserved and which cause
problems?!

!
Amplitudes usually lower for higher frequencies!

Nyquist frequency

Aliasing caused by frequencies
mirrored over the Nyquist frequency!

55(75)55(75)

Information Coding / Computer Graphics, ISY, LiTH

Anti-aliasing methods

• Linear post-filtering. Bad.!
!

• Super-sampling: Split pixels in sub-pixels. Check how
many sub-pixels that hit one pixel.!

!
• Area sampling: Calculate covered areas of each

pixel.!
!

• Non-linear post-filtering.

56(75)56(75)

Information Coding / Computer Graphics, ISY, LiTH

Supersampling

Simple but slow and!
memory-demanding

Draw in a high-res!
image buffer

Sample down to!
destination buffer

57(75)57(75)

Information Coding / Computer Graphics, ISY, LiTH

Area sampling!
!

Determine how much of each pixel!
that is covered by the shape

Requires knowledge of
the location of the border.!

!
Can not anti-alias

textures!
!

Usually impractical.

58(75)58(75)

Information Coding / Computer Graphics, ISY, LiTH

Multisampling!
!

Variant of supersampling!
!

More efficient!
!

Only improves edges

59(75)59(75)

Information Coding / Computer Graphics, ISY, LiTH

Multisampling

Multisampling: Only one
execution of fragment shader
for all samples from the same

geometry

Supersampling: One
execution of fragment shader

for each sample

60(75)60(75)

Information Coding / Computer Graphics, ISY, LiTH

Multisampling!
!

Less fragment processing!
!

Fewer texture accesses!
!

Same number of memory writes and same post-
processing

61(75)61(75)

Information Coding / Computer Graphics, ISY, LiTH

FXAA = Fast approXimative AA!
!

Post-processing!
!

No higher resolution image!
!

Non-linear filter!
!

Don’t filter patterns!
!
!

Several recent methods of this kind

62(75)62(75)

Information Coding / Computer Graphics, ISY, LiTH

Anti-aliasing in OpenGL!
!

GL_POLYGON_SMOOTH - Old built-in, avoid!
!

Accumulation buffer tricks: Obsolete, avoid!
!

glEnable(GL_MULTISAMPLE); Preferred!!
!

Can also be done by shaders. Usually unnecessary.

63(75)63(75)

Information Coding / Computer Graphics, ISY, LiTH

FSAA example

No AA AA

64(75)64(75)

Information Coding / Computer Graphics, ISY, LiTH

Anti-aliasing for procedural shapes!
!

New situation!!
!

Big difference: We know where the edge is located!!
!

Similar to area sampling!
!

We can make a transition at the edge

65(75)65(75)

Information Coding / Computer Graphics, ISY, LiTH

Clamp
!

variant clamping from 0 to 1!
!

Linear anti-aliasing

1

0

0

1

66(75)66(75)

Information Coding / Computer Graphics, ISY, LiTH

Smoothstep
!

Variant from 0 to 1!
!

Non-linear anti-aliasing

1

0 1

67(75)67(75)

Information Coding / Computer Graphics, ISY, LiTH

Direction dependency
!

Just going from 0 to one on the distance is not
perfect.!

!
Example:

The edge passes through the pixel on a
distance > 1!

68(75)68(75)

Information Coding / Computer Graphics, ISY, LiTH

More on anti-aliasing in Stefan's halftoning tutorial (esp page 3):!
!

https://weber.itn.liu.se/~stegu/webglshadertutorial/shadertutorial.html

69(75)69(75)

Information Coding / Computer Graphics, ISY, LiTH

Texture anti-aliasing!
!

Aliasing in textures are reduced by two methods:!
!

Linear filtering!
! glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,

GL_LINEAR);!
!

Mip-mapping!
glGenerateMipmap();!

!
! glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,

GL_LINEAR_MIPMAP_NEAREST);!
!

! glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
GL_LINEAR_MIPMAP_LINEAR);

70(75)70(75)

Information Coding / Computer Graphics, ISY, LiTH

MIP mapping
Texture mapping with anti-aliasing.!

!
A resolution pyramid is built from every texture.!

!
Memory cost: 33% more. Cheap!

128x128 64x64 32x32 16x16

71(75)71(75)

Information Coding / Computer Graphics, ISY, LiTH

MIP mapping filtering!
!Both within a level and between!!

72(75)72(75)

Information Coding / Computer Graphics, ISY, LiTH

MIP mapping filtering!
!

GL_NEAREST!
GL_LINEAR!

GL_NEAREST_MIPMAP_NEAREST!
GL_LINEAR_MIPMAP_NEAREST!
GL_NEAREST_MIPMAP_LINEAR!
GL_LINEAR_MIPMAP_LINEAR!

!
Preferred:!

GL_LINEAR for magnification!
GL_LINEAR_MIPMAP_LINEAR for minification

73(75)73(75)

Information Coding / Computer Graphics, ISY, LiTH

MIP mapping

Gives anti-aliasing of textures at a very low cost.!
!

Good results in most situations.!
!

Aliasing problems remain at steep angles.

74(75)74(75)

Information Coding / Computer Graphics, ISY, LiTH

Summary!
!

Supersampling: Computationally heavy.
Excellent results. Popular method in ray-tracing!

!
Multisampling: Simplified supersampling. Only

improves edges!
!

Area sampling/Smoothstep edges: Efficient
improvement for edges!

!
Mip-mapping: Anti-aliasing for textures

75(75)75(75)

